
The librar ies define the spatial
and temporal behaviours of each
symbol-class in each window of
the GUI (e.g. the quaver symbol-
class in S1).

The spati al and temporal
definitions are strictly independent
of each other.

All symbols are defined in terms
of the symbols in lower level
windows.

The libraries define control sets
and functions which supply the
default values of those controls.

Local values (both spatial and
temporal) can be edited in the GUI.

The GUI contains a unique, local
value for each symbol.

The temporal information in the
GUI can be used to synthesize
events. In effect, the GUI contains
a unique, hierarchically organised,
editable recording of the events
symbolised in the “score” .

A proposed editor for developing music

Freelance music copyist (no academic affil iation). 1969-72 Studied composition under Harrison Birtwistle at the Royal
Academy of Music in London. 1971-74 music copyist for Universal Edition (printed scores by Morton Feldman, Earle
Brown, Birtwistle etc.). 1974-2000 Karlheinz Stockhausen’s principal copyist. Currently working on a large score for
Peters Edition in Frankfurt, — and looking for an appropriate framework within which to develope this project.

The Wr iting of Style L ibrar ies
for Music Notation and Per formance

James Ingram
http://home.t-online.de/home/j.ingram

j.ingram@t-online.de

AudioSculpt* representation (30mm = 1 sec).
Space-time diagrams like this might appear in
one of the analog level windows.

It should be possible to enhance the uti l i ty
of many programs which currently use space-
time notations by providing them with an
interface to l ibraries of music symbols and
their meanings. The existing controls in event-
oriented programs (such the knobs and sliders
in most synthesizer software) could be fully
integrated into such a symbol hierarchy.

This spatial fexibi l i ty is necessary for the
efficient use of space and the development of
legibi l i ty in symbol ic transcriptions. The
spatial and temporal aspects of the symbols
must be kept strictly separate.

* AudioSculpt is an IRCAM program.

Timbres: Curtis Roads asked me to use icons
rather than words to designate timbres: “Some
electronic music composers have tr ied to
simulate acoustic instruments. Not me.”
Nevertheless, I used the words in these tables
as a general orientation while classifying the
timbres by (ear and eye). They may also be
helpful for readers of this poster. Note that
each icon stands for a range of timbres, just
as the duration symbols stand for ranges of
durations. Timbres should also be editable...

A transcription l ike this would be displayed
in one of the symbolic level windows in the
proposed GUI (S2 or higher, depending on
how the l ibraries are defined).

A prime concern here was to ensure that the
connecti on between the l evels of rep-
resentat i on shoul d, i n pr i nci pl e, be
programmable.

Example: Sonal Atoms by Curtis Roads

Symbols (icons) for timbre classes: These timbre classes were chosen because Sonal Atoms is one of a
collection of electronic music pieces called Point, Line, Cloud.
Points have a maximum length of 0.1 sec = 3 mm.

Transcription by James Ingram (2002).

hiss windhard
particles

soft
particles

Points (pitchless) Clouds (pitchless)

thick

thin
“metal”“wood”“ leather”

“electric” “bird” “birds”

Lines (pitched)

reg irr reg irr

Music notation
as a programming language

Adding a staccato dot to one of the symbolic
levels of the GUI would change the envelope
stored in the related notehead. This is an
example of a general rule: When a user
changes or edi ts an object in one of the
symbol ic level windows in the GUI , the
software has to take the local context of that
change into account in order to generate
defaul t temporal values f or the known
parameters of al l the related symbols in the
vicinity.

The preci se value of each i ndi vi dual
parameter in each individual symbol is unique,
and can relate both actively and passively to
the symbol’s local context in ways defined in
the l ibrary. Intui ti vely understanding the
“ correctness” of the default value which the
software provides, is to recognise the style
defined in the l ibrary.

Notice that because the defaul t values of
parti cul ar i nstanti ati ons of symbol s are
discovered by performing calls to functions,
there are no l imi ts to the complexity of the
spatial or temporal style.

It is even possible to think of music notation
as an event-oriented programming language
having noteheads for function names and other
objects in the local context (e.g. staccato dots)
as arguments to those functions.

Importantly for getting this project off the
ground, l ibraries may initially use very simple
procedures, but become more complex later.
There i s no reason why l ibraries wi th a
recognisable style, but whose inner workings
can only be understood by a few experts,
should not develop. Such l ibraries could be
said to be “more intell igent” .

The development
of temporal styles

There are two levels at which the temporal
styles in the l ibraries can be defined:

1. Assigning a set of controls to each symbol.
Non-expert users could skip this level of the
software, but nevertheless use method 2 below.

I RCAM ’ s OpenM usi c uses a v i sual
programming environment to def ine control
structures for “Maquettes” . A similar solution
could be used here, wi th users constructing
custom control sets by draggi ng and
connecting predefined, abstract control objects
and the symbols defined at lower levels.

2. Setting the preferences for the defaul t
values of a given set of controls. This could
for example be done in real time - a method
which would be especial ly important i f the
l ibrary is “ more intel l igent” , and cannot be
easi ly understood or di rectly edi ted by the
user.

Defaul t values for each symbol ’s known
control set could be related to a statistical
analysis of many performances of a given
score. (The default value could, for example,
easily be related to a Gaussian distribution.) A
multi-level score of a piece of classical music
could be fed wi th unl imi ted numbers of
recordings in order to seed its l ibraries with a
classical performance style.

 The original, printed score of the piece need
not appear verbatim in one of the GUI ’s
symbol-level windows. Al l symbols - even
preci se metronome marks - have to be
considered to be the names of functions.

Some l i brari es mi ght l earn a user ’ s
preferences by observing how that user sets or
changes particular values in the score, or allow
users to edit Gaussian distributions directly...

S2 symbols

These are names (rehearsal numbers).
They no longer necessarily represent
coordinates in absolute time.

(irregular dynamic and timbre)

38.1

39.3 39.65

39.75

40.62

41.4

35.72

33.12

31.530.9

30.7

31.3

30.2 30.8

32.9

35.57

32.3

31.5 34.6Event analysis (“ Chunking”)
This is the process whereby each event in a
series of events (represented in a space-time
diagram) is given a separate symbol (or name),
and the event’s name is connected to the
space-time information at a lower level.

The top line of the first diagram in the series
on the l ef t i s a typi cal space-t i me
representation of a series of events. As far as
a machine is concerned, this is a single,
undi f ferentiated curve. People however
i nst i nct i vel y break such curves i nto
manageable chunks. Such chunks can be
labeled just by putting a dot on each peak (the
dot can be oval, l ike a notehead).

The t r anscr ipt ion of dur at i ons: The
lengths of the “ events” can be classi f ied,
irrespective of the existence of a tempo, using
a logarithmically constructed trammel. Using
the classic duration symbols means that
legibi l i ty can be improved later (horizontal
spatial compression, use of beams).

It would be useful for the standard notation
of tempoed music to be a special case here: A
histogram can always be constructed from the
lengths of the events, so i f the diagram
represented a piece of classical music (without
triplets) with durations having proportions ca.
2:1, then it would be very easy to construct a
trammel to produce the original notation. If
there are no such proportions in the original
diagram, the user might relate the trammel to
the shortest length, or try to ensure maximum
differentiation in the resulting transcription.

Trammels for other symbols: The use of
trammels is generalisable for other parameters.

All symbols have freely definable meanings
in the proposed l ibraries. Conventional
meanings can be stored in standard l ibraries,
but this does not preclude unconventional uses
and/or symbol over loading.

Trammel construction (user control via histogram)

The transcr iption of durations

Trammels for other symbols (e.g. “ pitches” and “ dynamics”)

Pitch

Dynamic
(velocity)

Filter
Timbre etc.

Symbol over loading

Abstract

This paper proposes a GUI for authoring
music with nested music symbols.

The spatial aspects of the symbols (their
names and the behaviour of those names in
space) are strictly separated f rom thei r
temporal meanings. The spatial behaviours
and temporal meanings are stored in
separate functions which means that they
can become increasingly subtle, and that
di f ferent styles of performance can be
associ ated wi th i dent i cal notat i on
conventions.

A distinction is also made between the
spatial and temporal symbol defini tions
(which are stored in style l ibraries), and
their local instantiations in a particular
score. Users would have access to, and be
able to edit, both the def ini tions (which
provide defaul t values) and particular
instantiations of the symbols.

More “ intelligent” libraries can be trained
by directly demonstrating variations of local
meaning. The sharing and independent
development of these libraries by different
users impl ies that wri tten tradi tions of
performance practice are possible.

The background problem

The collapse of the 19th century paradigm for
music notation. We are not simply clocks with
added “expressivity” . It is therefore diff icult to
program the relation between standard music
notation and real events or performance practice.

Conclusions and relation to AI

The event edi tor proposed here is a general
framework within which many AI projects might
f i t - f or example i n the development of
expressive speech for automata.

AI research into performance practice and
expressivity may well suggest algorithms which
could be used to program the temporal meanings
of symbols. This in turn would create written
traditions of performance practice (software is a
form of writing) which would especially benefit
lesser known performance traditions and New
Music.

Currently, temporal styles have to be learned
in real time with two or more people present.
The use of written temporal style l ibraries would
enable individuals to learn a new style in their
own time, making expensive group rehearsals
more productive.

Trammel
(0 sec < <= 0.2 sec)
(0 mm < <= 6 mm)

events

event
synthesis

event
analysis

(“chunking”) S1

S2

S3 etc.

A1

A2

A3 etc.

nested,
editable windows

(the proposed GUI)

II IV

(the “performance”)

the “score”

system control
and feedback

(library for S1)

(library for A1)

(library for A2)

(library for S2)

(libraries for A3 etc.)

(libraries for S3 etc.)

nested, editable,
interdependent

software libraries

user
object perception
object creationevent creation

event perception

see below left

